190 research outputs found

    Coronary Computed Tomography Angiography—A Promising Imaging Modality in Diagnosing Coronary Artery Disease

    Get PDF
    BackgroundTraditionally, information on coronary artery lesions is obtained from invasive coronary angiography (CAG). The clinical applicability and diagnostic performance of the newly developed 64-slice multislice computed tomography (MSCT) scanner in coronary angiographic evaluation is not well evaluated.MethodsCoronary computed tomography angiography (CCTA) was performed in 345 patients (119 women, 226 men; mean age, 59.64 ±11.67 years). Concomitant CAG was performed in 53 patients. The diagnostic performance of CCTA for detecting significant lesions was compared with that of CAG by 3 independent cardiologists.ResultsAll CCTA was performed without complication. Comparison between CCTA and CAG was made in the 53 patients who underwent both studies. Sensitivity, specificity and the positive and negative predictive values for the 53 patients were: 81%, 99%, 87% and 99%, respectively.ConclusionThe 64-slice MSCT, developed in recent years, allows reliable noninvasive evaluation of coronary artery morphology, including plaque, stenosis and congenital anomaly. The diagnostic accuracy of MSCT scans for detecting lesions makes it a good imaging substitute for CAG in the evaluation of these coronary segments. [J Chin Med Assoc 2008;71(5):241–246

    AI SMEs IN INDUSTRIAL MANAGEMENT

    Get PDF
    SMEs form the pile in the Romanian overall economy, creating a huge sum of the job and added benefit within the nation, which makes them important in this context. IoT and cloud are processing Romanian but the difficulties encountered during the adoption of those systems by Romanian SMEs. Nevertheless, current literature will not heavily concentrate on SMEs and their particular challenges nor will it include a lot of situation studies focusing upon maturity amounts of impaired computing and IoT technologies. The outcome of this research seeks to contribute to the field of IoT and maturation models by adding more research that is specific to SMEs in Romania. The particular insights created by the conclusions of this thesis goal to help SMEs and researchers in assessing maturity levels and dealing with the challenges connected to the adoption of either IoT or cloud computing technologies

    Medial reward and lateral non-reward orbitofrontal cortex circuits change in opposite directions in depression

    Get PDF
    The first brain-wide voxel-level resting state functional-connectivity neuroimaging analysis of depression is reported, with 421 patients with major depressive disorder and 488 controls. Resting state functional connectivity between different voxels reflects correlations of activity between those voxels and is a fundamental tool in helping to understand the brain regions with altered connectivity and function in depression. One major circuit with altered functional connectivity involved the medial orbitofrontal cortex BA 13, which is implicated in reward, and which had reduced functional connectivity in depression with memory systems in the parahippocampal gyrus and medial temporal lobe, especially involving the perirhinal cortex BA 36 and entorhinal cortex BA 28. The Hamilton Depression Rating Scale scores were correlated with weakened functional connectivity of the medial orbitofrontal cortex BA 13. Thus in depression there is decreased reward-related and memory system functional connectivity, and this is related to the depressed symptoms. The lateral orbitofrontal cortex BA 47/12, involved in non-reward and punishing events, did not have this reduced functional connectivity with memory systems. Second, the lateral orbitofrontal cortex BA 47/12 had increased functional connectivity with the precuneus, the angular gyrus, and the temporal visual cortex BA 21. This enhanced functional connectivity of the non-reward/punishment system (BA 47/12) with the precuneus (involved in the sense of self and agency), and the angular gyrus (involved in language) is thus related to the explicit affectively negative sense of the self, and of self-esteem, in depression. A comparison of the functional connectivity in 185 depressed patients not receiving medication and 182 patients receiving medication showed that the functional connectivity of the lateral orbitofrontal cortex BA 47/12 with these three brain areas was lower in the medicated than the unmedicated patients. This is consistent with the hypothesis that the increased functional connectivity of the lateral orbitofrontal cortex BA 47/12 is related to depression. Relating the changes in cortical connectivity to our understanding of the functions of different parts of the orbitofrontal cortex in emotion helps to provide new insight into the brain changes related to depression, which are considered in the Discussion

    The Greenland Telescope: Antenna Retrofit Status and Future Plans

    Full text link
    Since the ALMA North America Prototype Antenna was awarded to the Smithsonian Astrophysical Observatory (SAO), SAO and the Academia Sinica Institute of Astronomy & Astrophysics (ASIAA) are working jointly to relocate the antenna to Greenland. This paper shows the status of the antenna retrofit and the work carried out after the recommissioning and subsequent disassembly of the antenna at the VLA has taken place. The next coming months will see the start of the antenna reassembly at Thule Air Base. These activities are expected to last until the fall of 2017 when commissioning should take place. In parallel, design, fabrication and testing of the last components are taking place in Taiwan

    RNA biomarkers in colorectal cancer

    No full text
    Colorectal cancer (CRC) develops and progresses through a systematic selection for (epi) genetic alterations that drive the transformation from normal colon epithelium to adenocarcinoma. These changes affect both noncoding RNAs and mRNAs and so define the clinical behaviour of cancer cells within a distinctive host genetic and environmental context. Although earlier diagnosis and more effective treatment modalities have decreased mortality from CRC, prognostic stratification and adjuvant therapy selection after surgery remain dependent on broad descriptive classifications, opportune histological markers of poor prognosis and chemotherapy efficacy data derived from diverse CRC populations. Crucially, there is significant inter- and intra-individual variability in response to, and tolerance of, chemotherapy treatments. These limitations explain the small clinical benefit of new agents studied in contemporary phase III trials. Molecular assays have the potential to address these constraints and there has been intense interest in the identification of clinically relevant molecular biomarkers. These must be easy to obtain and quantify and ideally represent steps in well-understood carcinogenic pathways or host-response mechanisms. Although some biomarkers can provide broad prognostic information based on CRC subtype (e.g. MSI status) or can somewhat predict response to targeted therapies (e.g. KRAS), no RNA-based biomarkers have entered routine clinical practice. This is due, in part, to the genetic heterogeneity of both patients and CRC. In addition, serious underlying issues with regards to study design, poor technical protocols, inadequate quality controls and inappropriate data analysis prevent successful translation of research results. Consequently, the identification of clinically relevant panels of biomarkers will depend not just on further advances in our understanding of CRC biology, but will need to be coupled with appropriate study designs and more suitable, standardised and transparent techniques

    Towards scale‐up of graphene production via nonoxidizing liquid exfoliation methods

    Get PDF
    Graphene, the two‐dimensional form of carbon, has received a great deal of attention across academia and industry due to its extraordinary electrical, mechanical, thermal, chemical, and optical properties. In view of the potential impact of graphene on numerous and diverse applications in electronics, novel materials, energy, transport, and healthcare, large‐scale graphene production is a challenge that must be addressed. In the past decade, top–down production has demonstrated high potential for scale‐up. This review features the recent progress made in top–down production methods that have been proposed for the manufacturing of graphene‐based products. Fabrication methods such as liquid‐phase mechanical, chemical and electrochemical exfoliation of graphite are outlined, with a particular focus on nonoxidizing routes for graphene production. Analysis of exfoliation mechanisms, solvent considerations, key advantages and issues, and important production characteristics including production rate and yield, where applicable, are outlined. Future challenges and opportunities in graphene production are also highlighted

    Neural protection by naturopathic compounds—an example of tetramethylpyrazine from retina to brain

    Get PDF
    Given the advantages of being stable in the ambient environment, being permeable to the blood–brain and/or blood–eye barriers and being convenient for administration, naturopathic compounds have growingly become promising therapeutic candidates for neural protection. Extracted from one of the most common Chinese herbal medicines, tetramethylpyrazine (TMP), also designated as ligustrazine, has been suggested to be neuroprotective in the central nervous system as well as the peripheral nerve network. Although the detailed molecular mechanisms of its efficacy for neural protection are understood limitedly, accumulating evidence suggests that antioxidative stress, antagonism for calcium, and suppression of pro-inflammatory factors contribute significantly to its neuroprotection. In animal studies, systemic administration of TMP (subcutaneous injection, 50 mg/kg) significantly blocked neuronal degeneration in hippocampus as well as the other vulnerable regions in brains of Sprague–Dawley rats following kainate-induced prolonged seizures. Results from us and others also demonstrated potent neuroprotective efficacy of TMP for retinal cells and robust benefits for brain in Alzheimer’s disease or other brain injury. These results suggest a promising prospect for TMP to be used as a treatment of specific neurodegenerative diseases. Given the assessment of the distribution, metabolism, excretion, and toxicity information that is already available on most neuroprotective naturopathic compounds such as TMP, it would not take much preclinical data to justify bringing such therapeutic compounds to clinical trials in humans
    corecore